Loudspeaker Handbook John Eargle Pdf Free
The second edition of Loudspeaker Handbook follows the same general outlines as the highly successful first edition and has been augmented and updated in many areas of technology. Most notable are the developments in large-scale, programmable line arrays, distributed mode loudspeakers, and ultrasonic-based audio transduction. Loudspeaker Handbook John Eargle on Amazon.com.FREE. shipping on qualifying offers. The second edition of Loudspeaker Handbook follows the same.
- Format
- Häftad (Paperback / softback)
- Språk
- Engelska
- Antal sidor
- 378
- Utgivningsdatum
- 2012-12-15
- Upplaga
- Softcover reprint of the original 1st ed. 2002
- Förlag
- Springer-Verlag New York Inc.
- Medarbetare
- Eargle, John (ed.)
- Illustrationer
- IX, 378 p.
- Antal komponenter
- 1
- Komponenter
- 1 Paperback / softback
- ISBN
- 9781461358398
Du kanske gillar
Fri frakt inom Sverige för privatpersoner.
- Laddas ned direkt
- Skickas inom 10-15 vardagar
Passar bra ihop
- +
De som köpt den här boken har ofta också köpt Handbook of Recording Engineering av John Eargle (häftad).
Köp båda 2 för 3448 krKundrecensioner
Handbook of Recording Engineering
John Eargle's 4th edition of The Handbook of Recording Engineering is the latest version of his long-time classic hands-on book for aspiring recording engineers. It follows the broad outline of its predecessors, but has been completely recast for ..
Loudspeaker Handbook
The second edition of Loudspeaker Handbook follows the same general outlines as the highly successful first edition and has been augmented and updated in many areas of technology. Most notable are the developments in large-scale, programmable line..
I: General Acoustical Relationships.- 1. Sound Pressure and dB Lp (Sound Pressure Level).- 2. Frequency and Wavelength in Air.- 3. Inverse Square Losses in a Free Field.- 4. Attenuation with Distance from Plane and Line Sources in a Free Field.- 5. Atmospheric Sound Absorption as a Function of Frequency and Relative Humidity, I.- 6. Atmospheric Sound Absorption as a Function of Frequency and Relative Humidity, II.- 7. Atmospheric Absorption Due to Inverse Square Losses and Relative Humidity.- 8. NC and PNC Noise Criteria Curves.- 9. Sound Transmission Class (STC) Curves.- 10. Helmholtz Resonators.- 11. Resonance Frequency for Pipes Open at Both Ends.- 12. End Correction for Pipes.- 13. Resonance Frequency for Pipes Open at One End.- 14. Diffraction of Sound by a Cylinder, a Cube, and a Sphere.- 15. Response Curves Showing Diffraction by 10 Objects of Different Shape.- 16. Fresnel Diffraction over Sound Barriers.- 17. Definition of Critical Distance.- 18. Room Constant as a Function of Surface Area and Absorption.- 19. Relation between $$ overline alpha $$ and $$ - ln ;(1 - overline alpha ) $$ in Reverberation Time Calculations.- 20. Reverberant Level as a Function of Room Constant and Acoustical Power.- 21. Mean Free Path (MFP), Room Volume, and Surface Area.- 22. Sound Attenuation over Distance in Semireverberant Spaces.- 23. Critical Distance as a Function of Room Constant and Directivity Factor.- 24. Acoustical Power Required to Produce a Level of 94 dB Lp as a Function of Room Volume and Reverberation Time.- 25. Sound Pressure Level Produced by 1 Acoustic Watt as a Function of Room Constant and Distance from Source.- 26. Estimation of Total Absorption When Room Volume and Reverberation Time Are Known.- 27. Estimation of Room Constant When Room Volume and Reverberation Time Are Known.- 28. Estimation of Room Boundary Area When Volume Is Known.- 29. Reverberation Time Ratios with and without Atmospheric Losses.- 30. Relationship between Directivity Factor and Directivity Index.- 31. Wave number (k) as a Function of Piston Size and Frequency.- 32. Polar Response of a Piston Mounted in a Large Baffle.- 33. Polar Response of a Piston Mounted at the End of a Long Tube.- 34. Polar Response of an Unbaffled Piston.- 35. Off-axis Response of a Piston in a Large Baffle.- 36. Directivity of a Piston in a Large Baffle, at the End of a Long Tube, and in Free Space.- II. Loudspeakers.- 37. Transmission Coefficient versus Frequency for a Piston Mounted in a Large Baffle.- 38. Normalized Mutual Coupling for Multiple Pistons.- 39. Acoustical Power Output Produced on One Side of a Piston in a Large Baffle as a Function of Amplitude, Radius, and Frequency.- 40. Sound Pressure Level Produced by a Piston in a Large Baffle at a Distance of 1 Meter as a Function of Amplitude, Radius, and Frequency.- 41. Sound Pressure Level Produced by a Piston in a Large Baffle as a Function of Radiated Power and Distance.- 42. Peak Amplitude for 1 Acoustical Watt Radiated by a Piston into Half-Space as a Function of Radius and Frequency.- 43. Transducer Cone Deflection as a Function of Resonance Frequency.- 44. Second Harmonic Distortion in Horns.- 45. Frequency Modulation (FM) Distortion in Cone Transducers.- 46. Nominal Loudspeaker Efficiency as a Function of On-axis Sensitivity and Directivity Index.- 47. Sensitivity Ratings for Loudspeaker Systems.- 48. Plane Wave Tube (PWT) Sensitivity Ratings for Compression Drivers.- 49. Radiation Resistance for Various Horn Flare Development Curves.- 50. High-Frequency Driver Electrical Derating for Flat Power Response Equalization.- 51. Duty Cycle-Related Power Ratings.- 52. Resistance Change with Temperature for Copper.- 53. Weighting Curves for Loudspeaker Power Measurements.- 54. House Equalization Standard Curves for Sound Reinforcement and Program Monitoring.- 55. Transducer Sensitivity as a Function of Atmospheric Pressure and Temperature.- 56. Relation between 2? and 4? Loading and Baffle Size.- 57. Horn M
ISBN : 9781475756784
Genre : Science
File Size : 30.16 MB
Format : PDF, Kindle
Download : 821
Read : 193